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Abstract

This paper characterizes the necessary and sufficient conditions for tensegrity equilibria. Static models of tensegrity
structures are reduced to linear algebra problems, after first characterizing the problem in a vector space where direction
cosines are not needed. This is possible by describing the components of all member vectors. While our approach
enlarges (by a factor of 3) the vector space required to describe the problem, the advantage of enlarging the vector space
makes the mathematical structure of the problem amenable to linear algebra treatment. Using the linear algebraic
techniques, many variables are eliminated from the final existence equations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The tensegrity structures introduced by Snelson (1996) pose a wonderful blend of geometry and me-
chanics. In addition, they have engineering appeal in problems requiring large changes is structural shape.
Tensegrity structures exist as a prestressed stable connection of bars and strings. Most existing smart
structure methods are limited to small displacements, but the control of tensegrity structures allows very
large shape changes to occur (Skelton and Sultan, 1997; Skelton et al., 2001a; Motro, 1992). Therefore, an
efficient set of analytical tools could be the enabler to a host of new engineering concepts for deployable and
shape controllable structures. This paper characterizes the static equilibria of tensegrity structures in terms
of vectors which describe the elements (bars and strings), thereby eliminating the need to use direction
cosines and the subsequent transcendental functions that follow their use. For a comparison of previous
methods of form-finding in tensegrity structures, see Tibert and Pellegrino (2001), Vassart and Motro
(1999), Motro et al. (1994), Linkwitz (1999), Barnes (1998), and Schek (1974).

*Corresponding authors. Tel.: +1-858-822-1054/534-6146; fax: +1-858-822-3107.
E-mail addresses: darrell_williamson@uow.edu.au (D. Williamson), bobskelton@ucsd.edu (R.E. Skelton), jehan@ucsd.edu
(J. Han).

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0020-7683(03)00400-1


mail to: darrell_williamson@uow.edu.au

6348 D. Williamson et al. | International Journal of Solids and Structures 40 (2003 ) 6347-6367

It is well known in a variety of mathematical problems that enlarging the domain in which the problem
is posed can often simplify the mathematical treatment. In fact, many nonlinear problems admit solutions by
linear techniques by enlarging the domain of the problem. For example, nonlinear Riccati equations are
known to be solvable by linear algebra in a space that is twice the size of the original problem statement. The
purpose of this paper is to show that the mathematical structure of the equations admits some treatments by
linear algebra methods by enlarging the vector space in which the tensegrity statics problem is characterized.

Our results characterize the equilibria conditions of tensegrity structures in terms of a very small number
of variables since the necessary and sufficient conditions of the linear algebra treatment allow the elimi-
nation of several of the original variables. These results can be used for efficient algorithms to design and
simulate a large class of tensegrity structures. Tensegrity concepts have been around for 50 years without
efficient design procedures (Kenner, 1976; Pugh, 1976; Connelly, 1982, 1993, 1999; Ingber, 1993, 1997,
1998; Williamson and Skelton, 1998a,b; Motro, 1984, 1990, 2001; Skelton et al., 2001b).

The paper is organized as follows. After the review of mathematical preliminaries in Section 2, Section 3
introduces the network representations of tensegrity structures as an oriented graph in real three dimensional
space. Geometric connectivity, equilibrium, and a coordinate transformation will be introduced. Section 4
introduces the algebraic equilibrium conditions. After we derive necessary and sufficient conditions for the
existence of an unloaded tensegrity structure in equilibrium, we write the necessary and sufficient conditions
for the externally loaded structure in equilibrium. A couple of examples will illustrate the results.

2. Algebraic preliminaries

We let I, define the n x n identity matrix, and 0 define an n x m matrix of zeros. (The dimensions of 0 will
be clear from the context.) We also let p(A) define the rank of the matrix A. Let A € R and B € R,
then the Kronecker product (Horn and Johnson, 1985) of A and B is defined as

A1, DB A(1,2)B ---  A(1,n)B
A2,1)B  A4(2,2)B --- A(2,n)B

A®B= ) i ) € W
Am,)B A(m,2)B --- A(m,n)B

where A(i, j) is the (i, j) element of a matrix A. Then we have the following result.
Lemma 1. The following statements are true.

(i) Suppose A € R, Be R, C e R, Then
(A @ Im)T = AT o2 Im

ARL, +BL,=(A+B)®I1,
AsL)(CxI,) =(AC)® 1,

rank(A ® I,) = m x rank(A).

(i) Suppose A € R™" has eigenvalues {1, %2,..., ). Then AQ®1, also has eigenvalues {)1,7,...,4,}
where each eigenvalue is repeated m times.

The derivations in this paper rely heavily on the singular value decomposition svd(A) = {U,,X,,V,} of a
matrix A as expressed in the following result (Horn and Johnson, 1985).
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Lemma 2
(1) Suppose an n x m matrix A has rank ry, then there exists an n x n unitary matrix Uy, an m X m unitary
matrix V, and a positive definite v, x v, diagonal matrix Xy, such that

A=UxX, V!, ¥, = [E(;A 8} (1)
(i) If {Uy4, V,} are partitioned such that

Uy =[U, Usyl, V=1[Viy, Vol (2)
with

Uy € R, Uy e RV Vi e R Vy, € ) 3)
then

U, U,=1, U, -Uy=0 U, Uy=1,,,

Vi V=L, Vi -Vu=0 V5 -Vy =1, 4)

U, A=0, AV, =0.
(ii1) The algebraic equation
Ax =y
has a solution if and only ifU;Ay = 0. When this condition is satisfied, then all solutions x are of the form
X = V]AE;AI U}-Ay + Vyz,

where z, € W' is arbitrary.
(iv) Suppose A € R™" and

A=A®I1, svd(A)={UX,V4}.

Then A € R and

svd(A) = {U, @ L, X, 0L, V,®L}.

(v) Suppose A € R and

b=[b",bl,....b1]", b= bu ... byl €R. (5)
Then the algebraic equation

(AL)Xx=hb (6)
has a solution if and only if the equations

Ax,=b,, 1<i<p (7)
have solutions {x, € R", 1 <L p} where

be=[bi by ... bul. 8)
If

Xo =[x X2 ... xm], 1<U<p ©)
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are solutions of (7), then

T
- [et 4 . . T
X = [xlT,x;...,xT . X =[xp xp ... x,] €N (10)

m

is a solution of (6).

In particular, (6) has a solution if and only if (UEA ® Ip)f) = 0. When this condition is satisfied, then all so-
lutions x are of the form

X = (VI U, @L)b+ (Vy L)

where z, € R is arbitrary.

3. Network representation of structures

A tensegrity structure consists of a connection of tensile components (or strings) and compressive
components (or bars) in which the tension and compressive forces are directed along the strings and bars.
Consequently, in this paper, the equilibrium conditions are completely specified in terms of translational
forces.

We represent a tensegrity structure as an oriented graph (Desoer and Kuh, 1969) in real three dimen-
sional space R’ defined in terms of nodes and directed branches which are all represented as vectors in R,
A loop is any closed path in the graph. As we shall see, the advantage of this approach is that both the
magnitude and the direction of the forces are contained in vectors which can be solved using linear algebra.
Thus linear algebra plays a larger role in this approach compared to the usual approach in mechanics and
finite element methods using direction cosines.

In particular, suppose there are n, bars and ng strings for which bar contacts can only occur at the bar
ends. Then in the oriented graph of a tensegrity structure, the n, nodes consist of the ends of the bars as
represented by the n, vectors {p,}, and the n, + n, directed branches consist of the #, string branches (or
vectors) {s,} and the n, bar branches (or vectors) {b, }. If there are ny,, ( <ny,) bars which are not in contact
with any other bar, then

ny, = 2i’lb0 + I7lp7 ﬁp < Z(I’lb - l/lbo).
For example, if no two bars are in contact, then 7, = 0 and n, = 2n,,. Or, if n, — ny, bars all contact at a
single bar end, then 7, = ny — np, + 1.
Thus given a tensegrity structure consisting of n, nodes, n;, bars and n, strings, the positions of the nodes

are described by the n, vectors {p;,p,....,p, }. the positions of the bars are described by the n;, vectors
{bi,bs,...,b, }, and the positions of the strings are described by the n, vectors {si,s,...,s, }.

Definition 3. The geometry of the tensegrity structure is defined by the tensegrity node vector p € R*™, the
tensegrity bar vector b € R, and the tensegrity string vector s € R where

P =[PP, opy ), B =[bLby, b sT=s] s, s ). (11)

? Uy 7 Zng

Definition 4. A class k tensegrity structure connects only £ compressive members to a node.

Geometric connectivity. Each directed branch can undergo a displacement in reaching its equilibrium
state. String and bar vectors can change both their length and orientation. Node vectors can change both
their length and orientation but subject to a Law of Geometric Connectivity which we state as follows:

The vector sum of all branch vectors in any loop is zero. (12)
These equations are in the form of a set of linear algebraic equations in the branch vectors.
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Force equilibrium. In our study of tensegrity structures, we are concerned with structures in which bars
sustain compressive forces and strings do not. We therefore choose to distinguish between the string (or
tensile) forces {t,} and the bar (or compressive) forces {f,,} which are defined in terms of the string and bar
vectors respectively as follows.

Definition 5. Given the tensile force t, in the string characterized by the string vector s, and the compressive
force f, in the bar characterized by the bar vector b,, the tensile force coefficient y, > 0 and the compressive
force coefficient A, > 0 are defined by

ti =78, = Zubn. (13)

The forces of the tensegrity structure are defined by the external force vector w € ™™, the compression
vector f € R, and the tension vector t € R*™ where

Ny ) iy,

wh=[whwl, . W], fT:[flT,f;,...fT} = [¢F, €, ] (14)

It follows from (14) that (13) can be expressed in the form

t=T®L)s, f=(Ax1L)b (15)
where
I' =diag{y,,75,...,7..}, A=diag{i, ..., %} (16)

The diagonal matrices {I', A} shall be referred to as the tensile force coefficient matrix and compressive
coefficient force matrix, respectively.

Force convention. Suppose each node p, is subjected to compressive vector forces {f,;}, tensile vector
forces {t,} and external force w,. Then the Law for Static Equilibrium may be stated as follows:

Ztnk_zfmk_wk:o (17)

where a positive sign is assigned to a (tensile, compressive and external) force vector leaving a node, and a
negative sign is assigned to a (tensile, compressive and external) force vector entering a node. The negative
sign in (17) is a consequence of the fact that we choose to define positive force coefficients 4, and 7v,.

From the network, it follows that components of the string vector s and the bar vector b in (11) can be
written as a linear combination of components of the node vector p. Also, if branch £ is a bar which leaves
node i and enters node j, then b, = p, — p;, whereas if branch £ is a string which leaves node i and enters
node j, then sy = p; — p;. Hence we have éTp = [sT, bT}T where the matrix C consists only of block matrices
of the form {0,£I;}. In particular, if we consecutively number the ns+n, branches {s;,s,,...,
Su, b1, 0o, . by Fas {1,2,.. . ng,ng+ 1,...,ng+ ny}, then the 3n, x (3ns + 3ny) matrix C = [C,] is defined
by

I3 if force vector j enters node i
C; = ¢ —I; if force vector j leaves node i (18)
0 if force vector j is not incident with node i.

Also (i) each column of C has exactly one block I ‘and one block —I; with all other column blocks 0, and
(i1) for any row i there exists a column 1) such that C;, = ;= j:Ig Specifically, the “bar connectivity’” matrix B

and the “string connectivity” matrix S form the matrix C as follows:

- [g e
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where

S c £R3np><3ns7 Bc SRSHPXS%. (20)
Similarly, we define D = []~)l~j] to be the external force incidence matrix defined by

~ {13 if external force vector j enters node i (21)

D, = . . . .
v 0 if external force vector j is not incident with node i.

From network analysis, the law for static equilibrium and linear algebra, we have the following result.

Lemma 6. Consider a tensegrity structure as described by the geometric conditions given by (19). Then the
equilibrium force equations for a tensegrity structure under the external load w are

Al f| =0, A2[S B D] (22)

or equivalently

St = Bf + Dw (23)
where

S=S®I;, B=B&l;, D=DgI; (24)
for some S € R B e R*™, and D € R,

We shall refer to {S,B,D} as the string connectivity matrix, the bar connectivity matrix, and load inci-
dence matrix respectively. These incidence matrices are binary matrices whose components are {—1,0, 1}.
The computational significance of this fact is that roundoff errors in digital computers are avoided, dra-
matically increasing the size of problems that can be solved accurately on a digital computer.

In network analysis, the matrix A is known as the incidence matrix. This matrix is not the reduced in-
cidence matrix since we have included the datum node which means that one block row of equations in (22)
is dependent on the other rows. This fact does not cause any difficulties in subsequent developments. On the
contrary, some symmetry is preserved in the algebraic equations.

Lemma 7. Consider a tensegrity structure consisting of ny( = 1) bars and ny( = 1) strings as defined by the
connectivity matrices {S,B} in (24). Then

pg = rank(B) <mp, <np — 1.
In particular, if there are exactly r independent loops of only bar vectors, then py = ny, — r.

Proof. Each loop formed from bars connected end to end results in a linear relationship between the
corresponding bar vectors. There are at most n, — 1 connections between any n, nodes in order that there
be no loops. Hence, we have the required result. [

Example 8. Consider the 2-bar 4-string class 1 planar tensegrity structure illustrated in Fig. 1 with tensile
force vectors {t,t,,t;,t4} and compressive force vectors {f;,f,}. This structure has n, = 2 bars, n, = 4
nodes and n; = 4 strings. The Geometric Connectivity conditions (19) can be written in the form
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1 St 3
b2
S Is
4 S8 2
by
Sy S
1 S 3

Fig. 1. 2-Bar 4-string class 1 tensegrity.

_pl+p3:S1; pz—p3=SQ
—P,+Ps=S3, P;—Ps=% (25)
—p,+p,=b;, —p;+p,=bs

In (19) and (24), the connectivity matrices are given by

10 0 1 10
0 1 -1 0 1o

S=11 21 0 ol B=|0o 1| (26)
0 0 1 -l 0 1

Here n, = rank(B) = 2 < n, = 4. Also, in terms of the stated force convention (17), the conditions for static
equilibrium at nodes 1-4 are

—t1+t4+f1=0
tz—tg—fl—FWl:O
tt—-tb+fHh+w,=0
t;—t,—f, =0

(27)

These static equilibrium conditions and the geometric conditions can be written in the form (19)—(24), where

10 0 1]-1 0]0 o0

S regs = 0 1 -1 ol1 ol-1 o
A‘[S’B‘D}@)L_ 1 -1 0 o]0 —1/0 —1|®b

0o 0o 1 -1lo 1]0 o

Example 9. Consider the 4-bar 8-string planar class 2 tensegrity structure illustrated in Fig. 2. Now the bar
connectivity B and the string connectivity S in (24) are given by
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1 S 3 Ss 6 1 S 3 Ss 6

-1 0 0 1 0 0 0 -1 0 0 0
0 1 -1 0 0 0 1 1 0 0 1
1 -1 0 0 -1 0 0 0 -1 -1 0
S5=10 0o 1 -1 0 o ol B=lo 1 o o
o 0 0 0 0 1 -1 0 0 1 0
0 0 0 0 1 -1 0 0 0 0 -1

Here
rank(B) =4 =n, <n, = 6.

Example 10
(a) A 3-dimensional class 1 tensegrity consisting of one stage of n, = 3 bars, n, = 6 nodes and n, =9
strings is illustrated in Fig. 3. The corresponding connectivity matrices {S, B} are given by

-1 0 0 0 1 0 -1 0 O -1 0 O
o -1 0 o0 o0 1 0 1 0 1 0 0
S— !1 0 -1 0 0 O O -1 0 B_ 0 -1 0
0 1 o -1 0 0 0 0 1|’ 0 1 0
o o 1 O -1 0 0 0 -1 0 0 -1
o o0 o 1 o0 -1 1 0 O 0 0 1

where rank(B) = 3 = ny,, n, = 2ny,.

(b) A class 2 tensegrity structure may be derived from the structure in part (a) by replacing the strings
{s1,53,55} by bars {b4, b5, bs} where the nodes {pi, p3, ps} now become ball joints. In this new structure,
ny =ny =n, = 6. With s = [s] sT sT sT sT sI]", b=[b] bl b! b} bl b]]", we now have that

0o o o0 -1 0 0 -1 0 0 -1 0 1
-1 0 1 0 1 0 1 0o o0 0 0 o0
S — 6o o o0 o0 -1 0 B_ 0o -1 0 1 -1 0
1 -1 0 0 0 1} 0 1 0o o0 0 0
o o0 o0 o0 0 -1 o 0 -1 0 I -1
0 I -1 1 0 0 0 0 1 0o o0 O
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Fig. 3. 3-Bar 9-string class 1 tensegrity.

Here rank(B) = 5 =n, — 1 < n, = 6. Note that since there is exactly one loop {bs,bs,bs} of bars, it
follows form Lemma 7, rank(B) = n, — 1.

(c) Another class 2 tensegrity structure may be derived from the structure in part (b) by replacing the string
s9 by a bar b;. In this new structure, n, = 7,n, = 6 and n, = 5. Since there are now two independent
loops {b4,bs, b} and {b,, b7, bs} of bars, we have from Lemma 7 that rank(B) =n, —2 =15 <n, =6.

We have the following result.

Theorem 11. Suppose the n, x m, connectivity matrix B of rank py has the singular value decomposition

s 01[V]
B=[Us U 51 28
[ Bl B2]|: 0 0} {ng], pp < np ( )
where Ug, € R™*P8 V1 € R™®*PE or
>
B=[Upy UBZ][ ﬂvg, Pp = "o (29)

where Ug; € R"™™, Vz € R™"™. Also, given the tensegrity node vector p, define the coordinate transfor-
mation

p=Pq (30)
where

P=Pxl;, P"=[Pl P}

P, =X;/U, € W™ P, = U, € RUwrlm,
Then

(1) In terms of the transformed tensegrity node vector q, the tensegrity geometry is given by

T ~ ~
q= [da qu} ’ S = Squd + S—quea qQq = (V};l & 13)b (32)
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where q; € R¥2, q, € W) and
Si=S 9L S$S=S0k
where
S =P, Se R S, =P,S e R rl, (33)
(1) The tensegrity force equilibrium is given by

(Si@h)t=(Vy L)+ (D, @ I;)w

(S: @)t = (D, ® I;)w (34)

D, =P,D, D,=P,D. (35)
Proof. By Lemma 7, p; < n, which means {Up, Up,} are well defined. Part (i) follows directly from the
definition of P with quq =s, ]~32q = b with

S; =[S1,8]], B, =[Va ®L,0] (36)
with {§1 = I~’1§, S, = I~’2§} and {I~’1]~3 = VITgL® 13752 = I~’~2]§ = 0}. Part (ii) follows from the expansion of
the transformed equilibrium force equation S,t = B,f + D,w, where

S, B, b,|=P[S B D]

For notational simplicity, we assume in subsequent expressions that Vg = Vz whenever py, = n,. O

3.1. Class 1 structures

In a class 1 tensegrity structure, no two bars are connected, and so n, = 2n,. Without any loss of
generality, we can then label the nodes of the bar b, to be p,, and p,,_,. Hence for class 1 tensegrity
structures, we have

by = =Pt + Py m=1,2,... 1. (37)

Lemma 12. Given the tensegrity node vector p with (37), bar vector b, and string vector s, the geometry of the
class 1 tensegrity structure can be described by the algebraic equations

B'p=b, STp=s (38)
for some reduced n, x ns connectivity matrix S. The reduced n, x ny, connectivity matrix B is given by

B=1-1, (39)
where odd and even node selection matrix 1,, I, € R gre defined by

I' £ blockdiag{[1,0],[1,0],...,[1,0],[1,0]}

T A . (40)
17 2 blockdiag{[0, 1],(0,1] ..., [0, 1], 0, 1]}.

Then in (29)
n, =2ny,, pg=n, Vp=L (41)
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The following two corollaries give two special choices for transformations.

Corollary 13. From Theorem 11
(1) Let Py, Py, € R™™™ in (31) be given by

P =[P P} =3B J] (42)

and the inverse transformation is

P'=2P"=[B J] (43)

where B is given by (39) and J € R™*™ are defined by

JE (L +1,). (44)
(ii) The transformed coordinate q is given by

q =949, q=b (45)

where b is the bar vector and q, € R™ is the vector of the mass center of each of the bars given by

4 =[PP P;, ] (46)

where P, £ %(pzj + p2/—1)~
Corollary 14. From Theorem 11
(1) Let Py, P, € R™*™ in (31) be given by
P'=[-1, J] (47)
and the inverse transformation is

P'=[B L] (48)

x3ny

where B and J are given by (39) and (44) respectively, and odd and even selection matrix 1, I, € R
are given by (40).
(1) The transformed coordinate q is given by

q =lq5.9], @ => (49)
where b is the bar vector and q, € R*™ is a vector of the even nodes given by
4 =[P pis--op, - (50)

Example 15. Eqgs. (25), (27) of the 2-bar 4-string tensegrity introduced in Example 8 can be written in the
form (22) and (19) where b in (11) is already in the form (37). Then from Corollary 14, we have

1 0 0 -1 -1 1 -1 1
Slz ) S2:

-11 0 0 1 -1 1 -1
-1 0 0 O 1 1.0 0 (51)
PIZ ) PZZ
0 0 -1 0 0 011
or from Corollary 13, we have
I[-1 1 0 0 1 1 00
P‘E[o 0 -1 1]’ P2=310 0 1 1]

_

—_
|

—

If1 1 -1 -1
SIZE|:_1 :|7 SZZ
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4. Analysis of the transformed equilibrium conditions for a tensegrity structure

Definition 16. A tensegrity structure with tensile force coefficients {y,, > 0}, compressive force coefficients
{4, > 0}, node vector p, string vector s and bar vector b is said to be in equilibrium if the element rela-
tionships (13), the force equations (23) and the geometric equations (19) are all satisfied.

For the remainder of this paper, we choose to use the coordinate transformation derived in Theorem 11.

Requirements for equilibrium. Given an external force vector w, the problem of determining the geometric
and force configuration of a tensegrity structure consisting of ng strings and n, bars in equilibrium is
therefore equivalent to finding a solution q, € R¥*, q, € R =r8) of the equations

s= (S} ®@L)q, + (S; @ Ih)q, (52)
t=(T®L)s, I'Zdiag{y,7,...,7.} (53)
(S;L)t=(Dy®I;)w (54)
(Vi L) =(S;oL)t— (D, @L)w, Vi Vg =1 (55)
f=(A®L)b, A2diag{i;, /..., 4} (56)

for given matrices
S, € mpgxﬂs, S, € E}’{(”p_pB)an, D, ¢ ERPBX”W’ D, ¢ m(”p_pB>X’1w' (57)

Beyond equilibrium requirements, one might require shape constraints by requiring p to take on a specific
set of values p = p, where p = P"q. However, in this paper, our focus is only to characterize possible
equilibria, and so the freedom in choosing the nodal vector p will appear as free variables in the vector q., as
the sequel shows.

As a result of Lemma 2, conditions for the existence of solutions {q, € R, q, € K"} of (52)~(56)
are equivalent to conditions for the existence of solutions {q, € R"?,q, € R 72} of the equations:

s, =S/q, + S, (58)
t,=Ts,, T=diag{y;,7,..., 7.} (59)
S,t, = Dow, (60)
Vif, =Sit.—Dyw,, V5V =1 (61)
f.=Ab,, AZdiag{i, ;... A} (62)

4.1. Prestressed equilibrium structure

We now proceed to derive necessary and sufficient conditions for the existence of a structure in equi-
librium that is prestressed in the absence of any external load; that is, w = 0 in (52)—(56), or equivalently,
w, = 0 in (58)—(62). Our strategy for the examination of the conditions (58)—(62) is as follows. The solution
of the linear algebra problem (60) yields nonunique t. which lies in the right null space of S,. The existence
condition of q, for linear algebra problem (58) yields a condition on the left null space of S,. Hence (58) and
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(60) can be combined to obtain a unique expression for t, in terms of q,. This is key to the main results of
this paper.

We now establish necessary and sufficient conditions for a solution of equations (58)—(62) in the absence
of external forces (i.e. w, = 0) by examining each of these equations in turn beginning with the solution of
(58) and (60). The next result follows from Lemma 2.

Lemma 17. Suppose

p, £ rank(S,) < min{n, — pg, 1y} (63)
and let Sy have the singular value decomposition {U, X, V} given by
S, = UZV' € Rlimwre (64)
where
X, 0
U=[U, Uy, E= [ 0 0], V=[Vi, V)]

Uy € R Uy € Rb-rxnm)  y ¢ Ry, ¢ e

Then a necessary and sucient condition for (58) to have a solution q, € W™ "* is given by

Vi(s, —Slq,) = 0. (65)
Furthermore, when (65) is satisfied, all solutions q, are of the form
¢, = U Vi(s. - Siq)) + Usz, (66)

where 7, € R™ " is arbitrary.
We now consider the solution of (60) when w, = 0.

Lemma 18. When w, = 0, all solutions t. of (60) which guarantee (65) are of the form

t.= V.M 'VISiq,, M2V,I'V, (67)
in which case

q, = UL VIIT'V,M VI - 1,)S]q, + U,z, (68)

where 7, € R™ " is arbitrary.

Proof. From (64), (65) and Lemma 2, we have t, = V,z, where z, is the free solution of (60). Then from (59)
V;(Sr - S1Tq1) = V;(Fflez, - S1Tq1)~

Since V, has full column rank, the matrix M = VgF*le is invertible if it exists (that is, if y, > 0,

n=1,...,ns). Hence (65) is satisfied when z, = M*IVESIqu, and this gives (67). O

We now consider the solution of (61) and (62) when w, = 0.

Lemma 19. When w, = 0, a necessary and sucient condition for (61) and (62) to have a solution q, € R’ is
given by

(X~ V5 AVz)q, =0 (69)
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where

X2, V)M (S, V)", M2VITy, (70)
In particular, define

py 2rank(Y), YZX -V} AV, (71)
Then

(1) when py = pg, q, = 0 is the only solution of (69),
(il) when py =0, any q, € R is a solution of (69), and
(ill) when 0 < py < pg, all solutions q, are given by

q; = Vnz (72)

where z; € W*™" s free, and where {Uy, Xy, Vy} is the singular value decomposition of the matrix
Y € RPE*PE; that is

Xy1 0
0 o0

with Uy, € RPEPY Vy, € RPs*s=r1)

Uy = [Uyquz], Xy = [ ], Vy = [VYIaVY2]7 Py = rank(Y) (73)

Proof. From (67), (62) and (61)
Sit, — Vi, f. =S, VoM 'VIS[q, — V5, Ab, = (X — V}, AVy)gq,
where X is given in (70). The result then follows from the singular value decomposition of X after writing

(69) in the form Xq, = V;lfr, V;f, = V;AVBIql. D

There are many choices of {y;, 4} which guarantee a solution q; # 0 of (69). One choice is provided in
the following result.

Corollary 20. If I'y = I, and A, = 21, then all solutions of (69) are characterized by the modal data of the
(symmetric) matrix SIVZ(SIVZ)T. That is, all admissible values of A/y and q, are eigenvalues and eigenvectors
()f'Sle(S]Vz)T.

Proof. From (69) and I'y =3I, A; = 2L, X =S, V,V,S| =7X. Then (;X —iI)q, =0 or (X — pl)q, =0,
where p = 1/7. Hence p and q, are the eigenvalues and eigenvectors of X. O

We now make reference to Lemma 2, part (iv) to relate solutions of (58)—(62) as provided in Lemma 19
to solutions of (52)—(56).

Theorem 21. Consider a tensegrity structure as defined by the geometry and force equations in the absence of
external load as described by the geometric conditions
B'oL)p=b, (S"®@L)p=s, pecR™ becR™ scR™
and the equilibrium force equations
Seh)t=BaL)f, t=T®l)s, f=(AxL)b
where for {y, >0, 1, > 0},
I' =diag{y,, 72,7}, A=diag{i,42,..., 4}
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Then given any tensile force coefficients {y,, > 0,1 <m<ns}, there exist compressive force coefficients
{4 > 0,1 <n< ny} which define an equilibrium structure, if for some q, # 0, {A,T'} satisfy the condition:
T
(X - V31AVBl)q1 =0
X2, V)M (S, V), M2VITly,,

where Vg, is given by (28) and (29), S, is given by (33), and V, is given by (65).
Moreover, for any qq # 0 which satisfies

(X = V3AVy) @ 13)q, =0,

(74)

the nodal vector p is of the form
p=(PQ® L)z 2] (75)
where {zg € R¥* 7, € W)} may be arbitrarily chosen, and
P =[UsX;/, Up]
0L { L 0
LV, U,

where {Ug, X3} are given by (28) and (29).
The corresponding tensegrity string vector s, tension vector t, bar vector b and compression vector f are
given in terms of {qq,p} by

s=T"oh)t t=(V,M'VISI®l)q,

} , LAUX'VIT'V,M V] - L]S|

T (77)
b=B ®@L)p, f=(Ax1)b.
4.2. Externally loaded structures
Under the action of an external force vector w with component vectors {w;} given by
wh=[wl,wy,...,w | (78)

Suppose that the new equilibrium structure is assumed to be given by node vector p, bar vector b, string
vector s, compressive force vector f, tensile vector t, compressive force coefficient matrix A and tensile force
matrix I' as described by (52)—(56). As a result of Lemma 2, conditions for the existence of solutions
{qq € W2 q, € R )} of (52)~(56) are equivalent to conditions (58)—(62) for the existence of solutions
{q, € N2, q, € R "2}. Note that all force coefficients together with all node geometry will normally
change. We now seek necessary and sufficient conditions for the externally loaded structure to be in geo-
metric and force equilibrium. An extension of Lemmas 18 and 19 gives us the following result.

Theorem 22
(1) All solutions t. of (60) which guarantee (65) are of the form

t. = V,M 'VISiq, + Giw,, M2VIT'V,

79
G =1, -V, M 'VIT"HV, 2, 'UD,. )
(ii) A necessary and sucient condition for (61) and (62) to have a solution b € R™ is given by
X — VLAV = Gw,
( Bl Bl)ql (80)

U P,w, =0
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where X is given by (70), and
G2D, -SG,. (81)

Proof. Since (58) is not directly dependent on w,, Lemma 17 applies for w, # 0. Now consider the solution
of (60) for w, # 0. A necessary condition for the existence of a solution t is U;Pzw, =0, and in this case, all
solutions t, are of the form

t. = Voz, + V, X,/ U Dyw,

for any z, € R™ " where as in (63), r is the rank of S,. Now in order that condition (65) is satisfied, z, must
be selected such that

ViT ' (Voz, + V,E,'U/Dyw,) — VIS[q, = 0.
That is

7, =M 'VISlq, - M 'VII'V,Z, /U D,w,
which gives (79). From (60), (62) and (79)

Sit, — Dyw, — VI.f, =S, V,M 'VISTq, +S,G,w, — D;w, — V} Ab,
which gives (81). O

The first condition in (80) is a nonhomogeneous equivalent of condition (69). However it is unlikely

(although not impossible) that VBTI AVg =X for w, # 0. Instead, is more likely that ry £ p(VBTlAVBI -X)
satisfies 0 < ry < ny,, where {Uy, Xy, Vy} is the singular value decomposition of the matrix Y € R**** given

by (73). If 7y = ny, then q, = (A — X)'Dw, is unique.
When U;Pzw, = 0, the solution q; is of the form

q, = Vizy + Vi1 5,\U;, Dw,, UjPow, =0

where zy € R™ " is unknown. The possibility of multiple solutions is interesting; either only one solution is
possible and more information is required to determine zy, or many solutions are possible. In the latter
case, the particular equilibrium obtained will then depend on way in which the external load w, is intro-
duced. The structural implications of the null space condition U;Pzw, = 0 on the external load w, would
then also require a physical interpretation.

The existence of an equilibrium solution however requires the second condition in (80) on the external
force w, to be satisfied. In this regard, we have the following result.

Lemma 23. For all structures {S,B}, the (m, — r) x ng matrix product U P, is of the form
U,P, =¢[l,1,...,1] (82)

or some vector e. Hence UTPow, = 0 if and only i
2

k=1

Proof. It follows from Lemma 2 and svd(S;) in Lemma 17 that U)S, = 0 which from (33) implies
U;PZS = 0. Now from Lemma 6, each column of S has exactly 1 and exactly —1 with all other column
elements 0. Furthermore, for every ith row of S, there exists a column j such that the ijth component of S is
+1. These properties of S then imply that UEPz is of the form (82) for some vector e, and so
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ﬂp

U;Pzw,. =€ E W
k=1

Now if the full row rank matrix sz is partitioned into the block form Ul = (Z,,Z,,...,Z,) it follows from
(42) that

6;]32:[Z17Z]7Z23Z2--~,Z an]

np )

which then guarantees that INJ;IN’Z also has full row rank, and consequently that the matrix e is invert-
ible. [

Condition (83) expresses the requirement that for an externally loaded tensegrity structure to be in force
and geometric equilibrium, it is necessary (but not sufficient) that the sum of the external forces is zero.

5. Computational algorithm for equilibria
One procedure for construction of a tensegrity structure in equilibrium is provided as follows.

Step 1. Given the connectivity matrices S and B from the network topology, find a nonsingular matrix
P = [P|,P;] such that BqT =B'P = [V},,0,,], and calculate {S, = P;S,S, = P,S}.

Step 2. Choose {y,, > 0} and {4, > 0} such that det(X — V3 AVy) = 0.

Step 3a. Select suitable zg and compute q, by

9 = (Vr2 ® I3)zq.
Step 3b. When the bar connectivity matrix B has full rank p; = n, (i.e. no loops of bar vectors), then one
can select suitable zg and compute b by
b = (V31Vy2 039 I3)Zd.
Step 4. Select z. and compute the node vector p from (75).
Step 5. Compute {t,s,f,b} from
s=T"'ohL)t, b=B"2L)p, f=(Axkb
t=(V:M 'V;S] @ L)gq + (D; @ L)w (84)
D, = (I, — V.M 'V, T "V, ZUP,.

6. Illustrated examples
We now illustrate the construction procedure for a simple tensegrity structure.

Example 24. A general force configuration for the class 1 tensegrity structure in Example 8 with
w; =w, =0 will be investigated in this section. Suppose the force coefficient matrices are given by
A = diag{/, 42} and I' = diag{y,, 75,73, 74}

Step 1. The connectivity matrices S, B and the coordinate transformation P = [P, P}] are given in
Example 8. Since B is of full column rank matrix and V, spans the null space of S,, we compute Vz =1,
and



6364 D. Williamson et al. | International Journal of Solids and Structures 40 (2003 ) 6347-6367

-1 1
0 O
V2= 10
0O 0 1

Step 2. Choose {y,, > 0} and {4, > 0} such that det(X — V; AVy,) = 0, where

1 : : _ :
X = S, V,(VIT'V,) 'VIST = 2+ 73)0a+01) (o3 +7200) |
A F L vt rae) ()t
In all choices for {4,} that led to the rank of (X — A) having rank 1, the 4 x2 matrix Vy, is of the form
VI, = [A],£A]] in (72); that is the two bar vectors {b;,b,} are always parallel, so the equilibrium structure

is one dimensional with {p, = p;,p, = p,}. Hence for a two-dimensional structure, X — A must have rank
zero. This requires

V301
i —
! V2
A _A'_'« A +'«
A :(/2 /3)(/4 /1) (85)

Yo+ V3tV + 7
() )
Yo+ V3tV +7

where v,, 7,, and y; are free positive constants. We choose {y, = 1;k = 1,2,3} and then I' = I,. It follows
that X = I, and A = I, satisfy condition (74) in Theorem 21.

Step 3b. When the bar connectivity matrix B has full rank p; = n, (i.e. no loops of bar vectors), then one
can select suitable zy and compute b by b = (V3 Vy, ® I3)z4. Since we choose y and 2 such that X — A =0,
Vy, = I; that is the bar vector is arbitrary. Let us choose b; = [2, O]T, b, = [0, 2]T.

Step 4. Select z. and compute the node vector p from (75).

The nodes {p, = [-1,0]",p, = [1,0]",py = [0,—1]", p, = [0,1]"} define an equilibrium solution from (75)
setting z. is zero. When we set z. = [1,1]", we obtain the nodal vector

 [—0.6464 13536 03536 ~ T0.3536
Pr=1 03536 ° P27 03536 P77 [-06464] P47 |1.3536]
This choices of z, only translate the geometric center of the structure from [0, 0]" to 0.3536[1, 1], since all

force coefficients and b have been specified.
Step 5. Compute {t,s,f} from (84).

Example 25. Consider the (3,9;3) class | tensegrity structure defined in Example 10. A symmetrical force
configuration will be investigated with equal bar force coefficients {1, = 1, = A3 = 1}, equal ‘base’ string
force coefficients {y, = y, = 7; =7, }, equal ‘top’ string coefficients {y, = ys = 75 =7,}, and equal vertical
string coefficients {y; = 75 = 79 =7, }. Then

1
(292 + 8yppe + 677y + 697 + 292 4 392)pdviyd

X =S, V,(VIr-tv,)'vIsT = (Xi X, X3,

where
(e + 7+ 70) (V2 + 39,7+ 360 + 490+ 78 +97)

Xi = | —=Vov¥e — Yo¥i — 4Veve — 3vevy — Vo + Wi + 20y + 7]
—4pp Y — Vou¥e — Ve + 202 ¥y — 30 E - + 73
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—PoW Ve = Vo¥i — HVeve = 3ven — Vo + WV 200 + 1)
Xo = | 10p,7, 7 + 4vo¥? + Tydve + Syov2 + 69y, + 78 + 2007 + 3972 + 73
=39677 — VoW — WP 02 = 30Rv+ 12 — v s

—AypY? — PV — VIV 202 Vi = 3R =+ 02
X; = —3ppYE — Velu¥e — WYE 02 — 320 + Vo¥2 — ViV, + V3 :
L6737 + 570 4 10907y + Topdf + 4vpe + 97 4+ 70 + 30p¥s + 27800

Now we need to choose the force coefficients such that
det(X — V}, AV ) = 0.

Since bar connectivity matrix is of full column rank, Vz =1 and

- 2 N B > /second —
295 + 8y + 67pYy + 697 + 29¢ + 375

det(X—A) =

where

Asecond 2 (= 27024 29007 + 29307 + 6750 + 159507 + 20503 + 697 + 200y — 670pd — 109,772 — 1699,
+ 27047 = 2902 = 10709, + 636479, — 69,497 + 87277 — 167547 — 22927,
+ 20797 4 327 4 62707+ 167700 + 8767003 + 16707,70)-
Since smaller rank of (X — A) yields more freedom for the choice of b, we choose 7, = 1. Next evaluating
the second term when y, = 4, we have

Duccondly —; = —6477F — 67 + 6777 + 678y + 157077 — 67,47y, + 34
= (2 =700 = 20)(F = 700 — 207)-
We conclude 4 = +/pyp + 292 or = \/y, + 272, since 4 should be positive.
When we apply 2 = /7y, + 292,
XA (76 = 70 (6 + 2 X
25 + OppYe + 117p7 + 897 + 670

where 7, = \/7,(7, +27,) and

_ To 206 300 =V = = e Nt Vw
X= 1 =% =4 =3 7+ +67 =27 = i
Vet Vot _2Vt — Vbt Tt
Note that the rank of the matrix X is 1. An interesting case is when 7, = 7,. In this case, an equilibrium

solution with A = X is provided by 4 = y, = /3y, for all choices of {y,}. Hence the bar vector can be freely
chosen in this case. When y, =y, = 1 and A = y, = /3, the structural shape is the prism given in Fig. 3.

7. Conclusion

This paper characterizes the static equilibria of tensegrity structures. Analytical expressions are derived
for the equilibrium condition of a tensegrity structure in terms of member force coefficients and string and
bar connectivity information. We use vectors to describe each element (bars and tendons), eliminating the
need to use direction cosines and the subsequent transcendental functions that follow their use. By en-
larging the vector space in which we characterize the problem, the mathematical structure of the equations
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admit treatment by linear algebra methods, for the most part. This reduces the study of a significant portion
of the tensegrity equilibria to a series of linear algebra problems. Our results characterize the equilibria
conditions of tensegrity structures in terms of a very small number of variables since the necessary and
sufficient conditions of the linear algebra treatment has eliminated several of the original variables. This
formulation offers insight and identifies the free parameters that may be used to achieve desired structural
shapes. Since all conditions are necessary and sufficient, these results can be used in the design of any
tensegrity structure. Special insightful properties are available in the special case when one designs a
tensegrity structure so that all strings have the same force per unit length (), and all bars have the same
force per unit length (). In this case, all admissible values of 1/y are the discrete set of eigenvalues of a
matrix given in terms of only the string connectivity matrix. Furthermore the only bar vectors which can be
assigned are eigenvectors of the same matrix. Future papers will integrate these algorithms into software to
make these designs more efficient.
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